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1 Introduction

Considered is a capital budgeting problem with linear decision

variables that can be either continuous or integer and where some or all

of the associated cash flows are random variables that may be statisti-

cally dependent.

It is formulated as a problem of linear programming under risk

for which mainly three approaches, stochastic programming, linear pro—

grannuing under uncertainty and chance—constrained programming, have been

1)developed.

Stochastic linear programming, an approach originally suggested

by Tintner [321 is primarily concerned with the probability distribution

2)of the objective function s value.

Linear programming under uncertainty or, as it is sometimes termed,

stochastic programming with recourse, was suggested independently by

Beale [ 4] and Dantzig [101. The basic innovation of this approach is to

amend the problem to allow the decision maker the opportunity to make

corrective actions after the random variables are observed and/or pay

penalties for constraint violations.

Charnes, Cooper and Symonds [ 8] have presented a third approach

called chance—constrained prograniming3~ in which each constraint must be

satisfied with a certain tolerance probability, i.e.,the fulfillment of

the constraints is not required to be guaranteed as in linear programming

under uncertainty.

For the formulation of objectives in chance—constrained program-

ming approaches different criteria have been discussed, the principal ones

outlined in Charnes and Cooper [ 7].

_ _  
_



— 2 —

In this paper, the capital budgeting problem is considered to be

adequately represented by a chance—constrained programming model with an

objective function that includes the expected value and standard deviation

of a f irm’s horizon value.

The application of chance—constrained programming to capital bud-

geting problems has been discussed before. See for example Arzac [ 11,
Byrne, Charnes, Cooper and Kortanek [ 3], Byrne, Cooper, Charnes, Davis
and Guilford [ 51, Hillier [15], Naslund [24,25], Naslund and Whinston [27],

Robertson [28], Struve [31] or Spetzler [30].

The main purpose of this paper is to show that a stochastic capital

budgeting problem with continuous and/or integer decision variables can be

formulated as a convex chance—constrained programming problem that can be

approximated by an ordinary (integer or noninteger) linear programming

problem.

Furthermore, we will show that the proposed procedure allows the

determination of an optimal cash reserve and, in addition, the considera-

tion of decision opportunities that deal with an unexpected surplus or

deficit in periodic capital budgets as well as of penalties involved if the

probability constraints do happen to be violated.

2. A stochastic capital budgeting problem

2.1 Basic formulation

Let us consider a capital budgeting problem in which we assume that

a firm choose8 those physical and financial projects which maximize its

horizon value subject to physical and financial constraints in distinguished

periods.4~ Furthermore, it is assumed that (a) interdependences between

— ~~~~~~~~~~~ ‘ .~~~ • . .~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2
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projects and (b) the capital market conditions can be expressed in an

(integer or noninteger) linear programming format5~ such that the capital

budgeting problem can be formulated mathematically as:

T
maximize z = E c~x~ (la)

i~].

subject to Z g ixi 
= .

~
Dt (tl,..,T) (lb)

i=l
c X (i 1,..,T) (ic)

0 < X
i 

< 1 (i=l,..,T) (ld)

where

x~ = vector of decision variables, each representing the fraction of a

project (physical capital projects as well as borrowing and lending

opportunities) started in period i,

c~, = vector representing the horizon value of post horizon cash flows

associated with one unit of xi,,

= vector representing the net cash flow in period t associated with

one unit of xi,,

D
t 

= the total amount of net cash flows in period t associated with pro-

jects realized prior to the start of the planning process,

and where the constraints x~cX (i— l,..,T) can be expressed in an (integer

6)
or noninteger) linear programming format.

The elements of the vectors ci (i—l,..,T) and g~~ (t—l,..,T;i’l,..,t)

and the D
~ 
(t—1,..,T) are assumed to be either constants or random variables

that might be statistically dependent. If some elements of the c~, or even

some elements of the g
~~ 

or some of the Dt are random variables, the hori-

zon value z is also a random variable, The same is true for 
~~ 

(t’~~, . ,T),

______ — -—...- — - —---. - - —-- ———- ___.__._____.__~ -—-“‘--—-.. — - -- ‘-
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the net cash flow in period t , defined by

t
n
~ 

= E + Dt (t”l,..,T) (2)
1=1

if some elements of the g~~ or some of the Dt 
are random variables.

In this case, the problem formulation (1) must be regarded as an

incomplete formulation of the decision situation as it does not reflect

the decision maker’s attitude towards the probability distributions of the

horizon value and the periodic net cash flows. It may be completed by spe-

cifying rules that allow the determination of solutions for the decision

problem which accord with the decision maker’s preferences.

2.2 Decision rules

We consider here only rules for decision situations where we assume

that the decision variables must be assigned values while the values the

random variables will take on are still unknown (zero—order decision rules).

For capital budgeting problems attempts to allow for the probability distri-

bution of random variables have been concentrated on

a) imposing probability constraints on periodic net cash flows while maxi—

mizing the expected value of the random objective variable (see Hillier

[15] or Naslund [25]) or

b) introducing an objective function which includes not only the expected

value of the random objective variable but a measure for the dispersion

of its probability distribution.
7
~

Both approaches have been e~ctensively discussed by their authors

with regard to the maximization of a decision maker’s utility function.

As for the choice of an appropriate dispersion measure in the second

approach, comparative discuss ions and model calculations have been mainly

____
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concentrated on the variance, semi—variance and standard deviation of

the objective variable’s probability distribution (see Markowitz [21],

Bey [ 2],  Hamada [13], Mao [22 ,231, Robertson [28] or Van Hom e [33,34]).

In this paper we combine both approaches as we assume a decision

maker that allows for the probability distribution of the random periodic

net cash flows n~ (t1 ,..,T) and the random horizon value z in the sto-

chastic capital budgeting problem (1) by preferring decisions which are

obtained according to the following rules:

1) In each period t (t=l ,..,T) the equality constraint (ib) should hold

for the expected value E(n
~
) of the periodic net cash flow while the

probability that a periodic deficit exceeds a specified amount b
~

should be lower than a specified risk level (l_a
~

) , i.e.

E(n ) = 0
t (3)

Prob {n > —b } > a
t—  t — t

2) A possible realization z’ of the horizon value z, defined by

z’ E(z) — B / V(z) with 8>0 (4)

with the expected value E(z) and the standard deviation / V(z) of the

probability distribution of z, should be as high as possible. For a

discussion and determination of 8 in a probability context see,f or

example ,Hillier and Lieberman (161.

While the second rule focuses on the standard deviation of the

horizon value’s probability distribution as a dispersion measure to be

ueed in the objective function of the programming model, it is easy to

show that other measures like the variance or semi—variance of the distri-

bution (as preferred by Markowitz [21]) can be used within the frame-

work of the proposed procedure as well. 

- -— -  -
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2.3 A complete formulation

By introducing the decision rules into the programming formula-

tion (1) of the stochastic capital budgeting problem, it can be formu-

lated as a chance—constrained programming problem:

T
maximize z’ = E( E c

1x1) 
— BVV( E cixi

) (5a)
i=1 i=l

t
subject to E( Z g

~i
xi) 

= E(_ D
~
) (Sb)

i=l

t
Prob ( (  Z g

~ixj+Dt ) > —b~} > a~ (t=l,..,T) (5c)
i=l

xi ~ X (i=1,..,T) (5d)

0 > X
i 

> 1 (i=l ,..,T) (Se)

The first step in solving this problem is to reduce it to a deter-

ministic equivalent form, i.e.,to determine deterministic equivalent forms

of the probability cjnstraints.

3. A deterministic equivalent form

Denote by s~ a “situation” k in period t, representing a possible

simultaneous realizaticn ~~~~~~~~~~~~~ of the random elements of gft for

1 1 ,..,T and D
t 

and by 4+~ 
a situation representing a simultaneous

realization ~~~~~~~~~ of the random elements of c~ (t—l ,..,T). Let S~ be

the set of all possible situations in a period t (tl,..,T) or the horizon

period 1+1, respectively.

Furthermore, denote by s~ a sequence j of situations over the

planning period such that

— 
~~~~~~~~~~~~~ 

with s~ c S~ (t—l ,..,T+l)

_ _ _ _ _  - - - ~- 
i.
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and let S be the set of all possible sequences.

For the moment, it is assumed that S includes only a finite small

number q of possible sequences and that these sequences and their proba—

bilities p~ (j=l,..,q) are known. The possible net cash flows in the

various periods and the possible horizon values are then determined by

(a) the value of the decision vectors x~ (t=l ,..,T) and (b) the possible

realizations of situation sequences.

3.1 The probability constraints

Let us now consider the possible net cash flows in a single period t

for a specified value of the decision vector x~, (il,..,t). Denote them by

(j=l,..q) and regard them as the possible realizations of a random

variable Furthermore, denote by E(n
~~
) the net cash flow in period t

of an “expected situation sequence” representing the expected v.Jues 
~~~~~~

E(D
~
) and ~(c1) of ~~~‘ 

~~ 
and ci 

with i1,..,T.

Define

(E(n ) — n~ if n~ < E(n ) ‘
~

= 
tx tx tx — tX ( j=1,.. ,q (6a)

tx 0 otherwise J
k:~ 1~~

x 
— E(n

~~
) if n~~ > E(nt~

) j j l ,..,q (6b)
0 otherwise

Let us assume that the functional form of the probability distri-

bution of n , is known and that the fractilea of this distribution are

completely d:termined by its mean and variance.
8
~ Let F(u) denote the

cumulative distribution function of the standardized variable

u 
~~~~~~~~~~~~ 

V(n
~~

) . Def ine Uat by the relationship F(uat)=at

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Then the deterministic equivalent form of the probability constraint in

period t for a cp~..cified decision vector can be formulated as
9
~

E(n
~~
) — u~~/ V(n~~

) > _b
t 

(7)

However , if the functional form of the probability distribution

of is not known, Tchebychev ’s inequality (or the extension of

Camp—Meidel ~f can be regarded as unimodal, see Duncan [11]) still

yields an upper bound for U
at 

10) This bound is a very conservative

measure. However, it will be shown that the model calculations yield

some information about the functional form of the probability distribu-

tion of the net cash flow associated with the optimal decision vector.

This information might be used (a) to adjust the assumption about the

functional form or (b) to calculate the “true” 
~~ 

i.e. the a which

refers to the used u and the updated information about the functional
at

form of the net cash flow’s probability distribution.

Whatever the probability distribution of happens to be, as its

expected value E(n
~~
) has been restricted to zero in (5), (7) can be

rewritten as

u~IE p1 ((k ’
~)
2 

+ (k~~)
2
) < b t 

or

• 

- 
Z p1 ((k~~)

2 
+ (k~~)

2) < (b
~
/u
~~
)
2 (8)

j=l

(8) defines a convex upper bound for the absolute deviation of the

possible (j—1 ,..q) from E(n
~~
). It restricts the set of feasible

values of the decision vector x~, (i—l,..,t) in order to satisfy the

probability constraints in (5).

r 
— 

--—--— - -. 
• -

---a-- --- . --.•• .— .-.-~ -—-- -—---—- .~ -—.-- .--— ~-. -—-• ---~ —-- — —__~~__.-- • - -- -- —- -- —~ -~ -
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As the . due of the decision vector is not known explicitly, the

values of the 
~~ 

(j=1 ,..,q) and k~~ (j=1,..,q) in (8) are not either.

However, they can be determined simultaneously with the determination of

an optimal decision vector by introducing variables 
~~ 

(j1 ,,.,q) and

~~ (~=1,..,q) with the possible realizations

k~~ V x1 
r X (i=l,,.,t)

(9)

ki~ ~~ 
x1 c X (i’~l,. . , t)

into the programming model (5). The deterministic equivalent form of the

probability constraint in period t for an unspecified decision vector can

then be formulated as

+ (k~
1)2)< (b/u ) 2 (11))

From an economic point of view, these variables could be regarded

as single period borrowing and lending opportunities for unexpected cash

flows in period t. In this case, borrowing rates r and lending rates r~

might apply such that the borrowing or lending of a cash unit in period t

would affect the net cash flow in period t+l by R
~~

(l+r
~
) or R~=(l+r~),

respectively. While we will follow this interpretation when formulating

the deterministic equivalent form of the chance—constrained programming

• problem, the variables could be considered alternatively as representing

penalties involved if the constraints (5b) do happen to be violated .

However, in this case the penalties might have to be paid in period t

rather than in period t+l, i.e. the model formulation would have to be

changed accordingly.

-• -~~~~~~~~~~~~~~ - - ~~~
--—-•--- -•---- - —-- - ~ __ -.~~~~~~~__ __.__ _ _ _
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3.2 Objective function

A similar procedure can be used to reduce the objective function

of (5) to a more tractable form. Let us define a random variable w by

the relationship

T 
* 

T 
*w = 

~~ c~x~ — E( ~ c~x~) (11)
i=l i=l

where x~ (i=l,..,T) represents a specified value of the decision

vector x. (i=l,..,T). From (11) it follows that w has an expected value

E(w )=O and a variance

T 
* 

. 
-

V(w ) = V( 
~ 
cix .) (12)

i=l 1

Now, let us denote the possible realizations of w by

T T T* 3 * j *  *( E( Z c
1x~
) — 

~ 
c~,x . if c .xi 

< E( E c1x~)—i — I i=i i=l 1 1 
~~~~ —w — -

~~ o otherwise
(13)

T T . T
* * * *( c~x1 

— E( cixi) if c
~
x
~ 

> E( cixi)~+1 — 1 i=l i=l i=l I —W — j—1,. .,q

0 otherwise J

where j marks the relevant situation sequence s~ (j=1,..,q). Then we get

V(w
~
) E p1((w i)

2 
+ (w~1)

2) (14)
j=1

By proceeding as described above for the determination of the variance

of a periodic net cash flow we introduce variables w~~ (j1 ,..,q) and

• w’~ (j—l ,..,q) with the possible realizations

_ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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w~~ : w~~ ~ 
x1 c X (i=l ,..,T)

into the programming model. Let

T
y
2 

= V(w
_i
.fw+i) and v = E( Z c~x~)

1=1

Then we can replace the objective function of the chance—constrained

programming formulation by the equivalent

maximize z’ v

T
subject to E( E c

ixi
) — v = 0 (16)

i=l

q 
~ —

. 2 +~ 2 2E p~ ((w
3)+(w~~) — y  < 0

1=1

where the quadratic constraint defines a convex bound for the set of

feasible solutions of the decision problem.

3.3 Model

-j +j -j +jThe incorporation of the variables k
~ 
, k~ , w and w with

t=l,..,T and j=1,..,q into the programming model requires the explicit

consideration of each possible situation in period t (t=l ,. . ,T) and the

“horizon period” T+l, i.e. the consideration of all q situation sequences

over the planning period. (This procedure is similar to the one used in

stochastic programming with simple recourse [38]).

The deterministic equivalent form of the chance—constrained pro—

grainming problem can then be formulated mathematically as:

— -.—•-- ———— — rn 

~~~~~~~~~~ ~~~~ 
—, — —— —• .— ——— -- — -

~ 
—•— —

~~
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Maximize z’ v — By

subject to E(g11)x1 = —E(D1)

+ k~
3 

- k~
1 = -D~ (j.l,..,q)

+ ~~~~~~~~~~~~~~~~~~~~~~~ 

- 

= 
~
E(D

~
) (t-2,. .,T)

— R
~~i

k
~~i 

+ R _1k~~1 + k
t
1 

— k~
1 = —D~ (j=l,. . ,q;

1— 

t=2,. . ,T)

~~~~~~~~~~~~~~~~~~~~ 
.5~ 

(b~ /u~~~)
2 
(t=2,. . ,T)

+ Z(-P1çk~
3+p1R4i) - V 0 (17)

- R.rkT
3 + RTkT — V + — w~~ = 0 (j1 ,. .,q)

q 
~ 2E (p~(w J) +p~ (w 

J
) ) — y’ < 0

1=1

x1 ~ X (i—1 , . . , T)

0 < x ~ < 1  (i—1 ,..,r)

k 1,k~
1,v,w 1,~~

1,y > 0 (j1,..,q;
t—l ,..,T)

a — --_ - - -- ~~-—-—-- ~~ ,- — - --- - C - -- - ~~~~~~~~ - -~~~ 
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As the nonlinear constraints in (17) are all based on quadra - ic

separable functions, they can easily be approximated by a grid lineari-

zation. In this case, efficient (integer or noninteger) linear pro-

gramming algorithms can be used to solve the problem.

It is easy to show that the deterministic equivalent form of the

chance—constrained programming problem can be adapted to more complex

situations, i.e.,situations where the decision maker’s opportunity set

for dealing with an unexpected periodic surplus or deficit consists of

several distinguished single—period or multi—period borrowing and

lending opportunities. Furthermore, a technically similar formulation

would allow the consideration of penalties that have to be paid if a

deficit in a period t exceeds specified amounts or if the probability

constraints do happen to be violated.

As an example, consider a situation where several distinguished

single—period borrowing and lending opportunities are available. Denote

by y
~~ and vectors that represent the borrowing and lending opportu-

nities in a period t within the situation sequence j. Assume borrowing

and lending rates to be represented by vectors R
~ 

and R~ . Furthermore,

assume that the capital market conditions for these opportunities can

be expressed in a (integer or noninteger) linear programming format re—

-j ~1presented by the formulation 
~~ 

~ A

Then the constraints in (17) that refer to a period t 2 ,. .,T

could be replaced by the following formulation :

LT
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t q 
~ 4 j+ +

•
E E( g

~j
)x 1 + E (_p

~R~ .i y
~~1+p R

~_ 1y~ _ 1) E(D~ )
j=l

i~l
gtix1 

- R
i
y
~~1 

+ R~~1y~~1 + k~~ - k~~ = -D~
(j.l,. . ,q)

E (p~(l(
1)2+p1 (k~

1)
2) < (b itt )2 (18)

j=l t t at

+ - - k 1 + k~
1 

= 0t (j=l,.. ,q)

-j +j
~~~~~~~~~~~~~~ 

c A

(j= l,. . ,q)

4.2 Consideration of a variable cash reserve

The b
~ 

(t=l ,..,T) in the constraints (5c) can be regarded as

restrictions on the amount of cash that is easily available from exter-

nal sources for the compensation of “unexpected” deficits in the perio—

die net cash flows, i.e., their negative deviation from the expected

values. The formulation (5) does not allow the consideration of inter-

nal resources for this purpose. This is due to the assumption usually

made in chance—constrained programming approaches for capital budgeting

problems (see ,f or example,Naslund [25]) that the decision variables

• represent “contracts” that cannot be changed during a period for coin—

pensating unexpected deficits.

However, the possibility of determining an optimal periodic

cash reserve from internal resources can be incorporated into the

programming formulations (5) and (17).

—• —— ———-—•—- -. - — ---•-- —- -. ——— •- - -- — ——-— - •-- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Let us assume tha t external and internal resources are available

for compensating unexpected deficits in a period t. Denote by y
~ 

a deci-

sion variable tha t represents the amount reserved from internal resources.

Then (Sb) and (Sc) in (5) can be replaced by

t
E(E g

~i
Xi
) — = E( — D~ ) (t 1,. . ,T)

i=l
t

Prob ((  E g
~ ixi+D~

) > _ (b
~
+yt)}>. a~ 

(t=l,.. ,T) (19)
i=l

> 0 (t=l ,.  . ,T)

For reducing the probability constraints in (l9~ to a determinist ic
*equivalent form we define variables 
~ 

by the relationship

= b~ + (t=l ,.. ,T) (20)

and proceed as described in the preceding sections. We then get

q 
~ — j 2  +j2 * 2u

~~~
Z (p (k

~ 
) +(k

~ 
) ) —  (y

e) < 0 (t=l ,. . ,T)

(21)
*

— 

~~~~ 

>— b ~ (t—l ,..,T)

The quadratic constraints that define convex bounds on the set of

feasible solutions of the problem are based on quadratic separable func-

tions, i.e. ,their introduction into the programming model (17) would not

affect the possibility of its approximation by a linear programing

formulation.

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5. Random sampling of situation sequences

Suppose now that the number q of possible situation sequences is

large and that it is not feasible or economical to consider all sequences

explicitly in the model formulation. In this case, the decision of the

decision maker might be based on a random sample of sequences.

Assuming that the future probability distributions of the random

variables and their interdependences are known, a random sample of situa-

tion sequences could be generated by a simulation process. However, the

available data about future events is often restricted to a number of

sequences usually derived from the past, i.e.,from time series,etc. Then

this set of sequences is usually regarded to represent a random sample.

However a random sample of situation sequences happens to have

been formulated, its use affects the formulation of the probability con—

straints of the problem. If the probability distributions of the periodic

net cash flows (or the horizon value) can be regarded as normal or appro-

ximately normal, the necessary changes in the formulation of the deter—

ministic equivalent forms of the probability constraints can be calculated

in a straightforward manner.

Let us consider a probability constraint in the form (7) and

neglect for simplification the indices x and t such that

E(n) — u~ / V(n) > -b (22)

From the sample mean and the sample variance ~2 we may compute

(i_ U
a

S) as an estimate of (E(n)—u fV(n) ). In repeated sampling from a

stable distribution this estimate will be approximately normally distri—

buted (see Hald [12]) about (E (n)—u TV? )) so that we cannot be sure

L _ •____ I_ _
_ _ . •
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that (in—u s) as computed from a single sample will be larger or equal

(—b) even if E(n)_u
a

TV
~~
) > —b . To be “reasonably” sur e, i .e. ,wlth a

specified probability p, that the probability constraints will hold, the

multiplication factor u in (
~
1_u

as) has to be replaced by a factor uB

suc h t hat

Prob {(
~

i_u
B
s) > (E(n)_u

aF )} > p (23)

It has been shown elsewhere (see Hald [12]) that the normal dis t r i—

bution that approximates the probability distribution of X= (rn—u
8
s) has

mean M ( A ) = (E ( n )— u
8FV(n))  and variance

2
V( X ) V( n) ( — -~f 

) (2 4 )

where d denotes the sample size and f (d—l) the degree of freedom. Now,

let F(u) denote the cumulative distr ibution function of the standardized

variable u — ( A — M ( A ) ) / ~’ V ( A ) ) .  Define u by the relationship F(u)p

Then by proceeding in the usual way, the probability expression (23) can

be replaced by

N( X )—u / V(X) > (E(n)_u
a/ V(n) (25)

or —u~ - u — > —u (26)

As u , u , d and f are assumed to be known, can be calculated from (26).

If the functional form of the probability distributions of the net

cash flows 
~~ 
(t=l,. . ,T) are not norma l, the sampling distributions of

means and variances will not be the same as if they were normal, but the

computations will not be very seriously affected unless the departure from

normality is very marked and the samples are small (see Duncan [11]).

L - - • •~~~~~ ~~~~~~ — •.— .• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If the functional form is not known or we are unwilling to make

assumptions regarding it, then it is still possible to derive the mean

and variance of A~ Gi—u~s) from the sample (see Duncan 1111). But no

information is available about the functional form of the probability

distribution of A because no assumptions can be made about the functio-

nal form of the distribution of s. In this case one might apply Tcheby—

chev ’s inequality to get some rough limits on the probability variation. - •

6. Conclusion

In the preceding sections we were considering a capital budgeting

problem with continuous and/or integer decision variables where some or

all elements of the data were statistically dependent or independent ran-

dom variables. It was formulated as a chance—constrained programming

problem that allowed the explicit consideration of

a) decision opportunities dealing with a deficit or surplus in periodic

net cash flows such as the accumulation of an optimal cash reserve

• 
or appropriate borrowing and lending opportunities and of

b) penalties that have to be paid if periodic deficits do occur or the

probability constraints do happen to be violated.

It could be shown that the chance—constrained programming problem

can be approximated by an ordinary (integer or noninteger) linear pro—

granining problem. The proposed procedure is based on the explicit consi—

deration of possible realizations of the random variables in the program-

ming formulation as discussed in linear programming under uncertainty for

stochastic programs with simple recourse. The resulting increase in the

size of the programing formulation could be limited by basing the pro—
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were connected with a random sample of situation sequences, i.e.,of

cedure only on those possible realizations of the random variables that

possible subsequent periodic realizations of the random variables over

the planning period.

_ _ _  -- - - •  ~~~~~ • • ~~~~~• _ _~~•__•~~~~~~~~~~~~ i• _ _ _ 
~~~~~~~~~~~~~~~ 

•
~~~~~~~~~~~~~~~~~ 
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Footnotes

1. For a survey see Naslund (25], Vajda [36] or Kall [18].

2. See Sengupta [29] for a comprehensive discussion.

3. See also Charnes and Cooper [ 6].

4. See Charnes , Cooper and Miller [ 9] for the original presentation of
a horizon value objective function and Weingartner [37] for a compa-

rative discussion of models using the horizon value or the present

value of a firm in their objective function, respectively.

5. See Weingartner [37) for some specific formulations.

6. Note that the constraints (lb) are formulated as equalities. This is

due to the assumption that the set of bending and borrowing oppo:tu—

nities in each period t includes all available alternatives for

cash use.

7. See Markowitz [21] for the original presentation though in the context

of a portfolio investment problem.

8. See Hillier [15] for a discussion of relations between the probability

distribution of the random variables g~~ (i=l,..,t) and Dt and the

probability distribution of their linear combination and the con-

ditions under which the probability distribution of 
~~~ 

can be regar—

ded as normal or at least (by some version of the Central Limit

Theorem) approximately normal.

9. See Hillier and Lieberman [16].

10. See Hillier [14].

—~~~~~~~_-- ------~~~~~~~~ ~~
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